SALSA: Full Stokes Polarization camera - Spatial inhomogeneity and field calibration

Mathieu Vedel* – Nick Lechocinski – Sebastien Breungot

Bossa Nova Technologies

11922 Jefferson Blvd Culver City, CA 90230,USA <u>www.bossanovatech.com</u> info@bossanovatech.com

I) Bossa Nova Technologies overview

II) SALSA Technology

- A. Division of time polarimeter
- B. Calibration

Bossa Nova

C. Need for "field" calibration

III) Full Stokes polarization imager

- A. Software
- B. Specifications
- C. Potential applications Examples

Located in Los Angeles (Culver City), CA, USA

Founded in 2002

Bossa Nova

- Small business of 7 people specialized in optics, electronics, imaging and software development
- Manufacturer of scientific and testing equipment : laser ultrasonic inspection equipment, polarization cameras and systems for the cosmetic testing
- Provides research for NASA, NSF, DoD and corporate clients

Bossa Nova Technologies provides *products* and *services* for non-destructive testing.

3 lines of products:

Bossa Nova

- Polarization Imaging SAMBA, SALSA, RUMBA & POLKA
- Cosmetic Testing Equipment (Hair & Face)
- Laser Ultrasonics
 TEMPO, QUARTET

LU Systems

• COMPACT!

Our Objective was to develop a camera that is:

• COMPACT!

Bossa Nova

• Uses off the shelf components

Our Objective was to develop a camera that is:

• COMPACT!

Bossa Nova

- Uses off the shelf components
- Turn-key system

Our Objective was to develop a camera that is:

• COMPACT!

Bossa Nova

- Uses off the shelf components
- Turn-key system

At reasonable cost AND profitable!

SALSA: Full Stokes Polarization camera

Complete turn-key system:

Camera

- C-mount lens ready
- Controller
- Laptop
- Software
- SDK (LabVIEW)

Technology: 2 FLCs, 1 Analyser

PSA: State 1

Bossa Nova Tech

Raw images

Technology: 2 FLCs, 1 Analyser

Bossa Nova Tech

PSA: State 2

time

Technology: 2 FLCs, 1 Analyser

time

Technology: 2 FLCs, 1 Analyser

Technology -2

Mathematical model

Data Reduction Matrix (DRM) *

Experimental determination of the DRM

*R. A. Chipman, "Polarimetry," in Handbook of Optics, Vol. 2, Chap. 22.

Schott Tyo J. et al, "Review of passive imaging polarimetry for remote sensing applications", Applied Optics, Vol. 45, N22.

Mathieu Vedel - Bossa Nova Technologies - March 2014

Mathematical model

PSA Mueller matrices

Polarization State Analyzer in position **i**, **i**={0;1;2;3}

Bossa Nova Tech

Mueller matrix for the ith state of the PSA

Mathematical model

PSA Mueller matrices

Polarization State Analyzer in position **i**, **i**={0;1;2;3}

Bossa Nova

Tech

Mueller matrix for the *ith* state of the PSA

Detectors are only sensitive to the intensity of light

 $S_{0,out}^{PSAi} = m_{00}^{i} \cdot S_{0,in} + m_{01}^{i} \cdot S_{1,in} + m_{02}^{i} \cdot S_{2,in} + m_{03}^{i} \cdot S_{3,in}$

Experimental setup

PSG: Linear polarizer + $\lambda/4$

$$\begin{bmatrix} S_{0,out}^{0} \\ S_{0,out}^{1} \\ \vdots \\ S_{0,out}^{N} \end{bmatrix}_{i} = \begin{bmatrix} S_{0,in}^{0} & S_{1,in}^{0} & S_{2,in}^{0} & S_{3,in}^{0} \\ S_{0,in}^{1} & S_{1,in}^{1} & S_{2,in}^{1} & S_{3,in}^{1} \\ \vdots & \vdots & \vdots & \vdots \\ S_{0,in}^{N} & S_{1,in}^{N} & S_{2,in}^{N} & S_{3,in}^{N} \end{bmatrix} \cdot \begin{bmatrix} m_{00}^{state\,i} \\ m_{01}^{state\,i} \\ m_{02}^{state\,i} \\ m_{03}^{state\,i} \end{bmatrix}$$

N Linear equations: possible estimation of the $m_{0,l}^i$ parameters

Data Reduction Matrix

Bossa Nova Tech

$$\begin{bmatrix} m_{00}^{state\ i} \\ m_{01}^{state\ i} \\ m_{02}^{state\ i} \\ m_{03}^{state\ i} \end{bmatrix} = [(S_{in})^T]^+ \cdot \begin{bmatrix} S_{0,out}^0 \\ S_{0,out}^1 \\ \vdots \\ S_{0,out}^N \end{bmatrix}$$
Pseudo inversion

Global

$$\begin{bmatrix} I_{raw1} \\ I_{raw2} \\ I_{raw3} \\ I_{raw4} \end{bmatrix} = \begin{bmatrix} m_{00}^{state\ 1} & m_{01}^{state\ 1} & m_{02}^{state\ 1} & m_{03}^{state\ 1} \\ m_{00}^{state\ 2} & m_{01}^{state\ 2} & m_{02}^{state\ 2} & m_{03}^{state\ 2} \\ m_{00}^{state\ 3} & m_{01}^{state\ 3} & m_{02}^{state\ 3} & m_{03}^{state\ 3} \\ m_{00}^{state\ 4} & m_{01}^{state\ 4} & m_{02}^{state\ 4} & m_{03}^{state\ 4} \end{bmatrix} \cdot S_{in}$$

PSA matrix

Data Reduction Matrix

Optimization of Condition Number?

Optimization possible by adjusting the polarizer's orientation => α

Optimization of Condition Number?

Optimization of Condition Number?

Other wavelengths?

α is not optimum for all wavelengths

Mathieu Vedel – Bossa Nova Technologies – March 2014

 $CN \leq 6$

Multi-Optimization of Condition Number?

- 1. Characterization/model of our FLCs for each wavelength
- 2. Simulation of calibration procedure for each wavelength of interest
- 3. Optimization of polarizer orientation for each wavelength
- 4. Compromise angle $\alpha_{\lambda 1, \lambda 2, \dots}$...!
- 5. Actual calibration at $\alpha_{\lambda 1, \lambda 2, \dots}$
- 6. Testing

Bossa Nova Tec

7...

λ=[450nm...650nm]

Typical Calibration accuracy

$$DOLP = \frac{\sqrt{S_1^2 + S_2^2}}{S_0}$$

Error peak-to-valley (PV): 3%

FLCs spatial inhomogeneity

FLC between crossed polarizers

Contrast +50%

Mathieu Vedel - Bossa Nova Technologies - March 2014

FLCs spatial inhomogeneity

Bossa Nova

Contrast +50%

- Very little data from manufacturers
- Variations up to 2% from one area to another accounts for up to +/-5% variation of DOP
- Pixel/pixel calibration not realistic for live measurement/display of polarization parameters
- Need to develop a field calibration of the FLCs
- Several approaches are being considered from basic grid decomposition to "smarter" segmentation

Example -1

Mechanical Stress on a plastic CD case

Example -1

Mechanical Stress on a plastic CD case

 $\epsilon = 45^{\circ}$

 $\varepsilon = 0^{\circ}$

DOCP=100%

Example -1

Mechanical Stress on a plastic CD case

HSL Fusion Images

Possible to perform retardance/stress mapping!

Mathieu Vedel - Bossa Nova Technologies - March 2014

Bossa Nova Teo

Potential applications – Example -2 Biology measurements

Circular polarization reflected on a beetle scarab's carapace Non polarized illumination (integrated sphere)

ALMOST NO LINEAR POLARIZATION REFLECTED

Bossa Nova <mark>Te</mark>c

Potential applications – Example -2 Biology measurements

Circular polarization reflected on a beetle scarab's carapace Non polarized illumination (integrated sphere)

The specular reflection is elliptically polarized – left handed, DOCP≈40%, ε≈20°

Thank you!

Mathieu Vedel – Bossa Nova Technologies – March 2014